8 research outputs found

    Development of fire-resistant, low smoke generating, thermally stable end items for aircraft and spacecraft

    Get PDF
    Materials were developed to improve aircraft interior materials by modifying existing polymer structures, refining the process parameters, and by the use of mechanical configurations designed to overcome specific deficiencies. The optimization, selection, and fabrication of five fire resistant, low smoke emitting open cell foams are described for five different types of aircraft cabin structures. These include: resilient foams, laminate floor and wall paneling, thermal/acoustical insulation, molded shapes, and coated fabrics. All five have been produced from essentially the same polyimide precursor and have resulted in significant benefits from transfer of technology between the various tasks

    Formulation and characterization of polyimide resilient foams of various densities for aircraft seating applications

    Get PDF
    Light weight, heat and fire resistant low smoke generating polyimide foams are developed for aircraft seating applications. The material is upgraded and classified into groups for fabrication of cushions possessing acceptable comfort properties. Refinement and selection of foaming processes using a variety of previously developd foaming techniques and definition of property relationships to arrive at the selection and classfication of polyimide foams into five groups in accordance with predetermined ILD values are emphasized

    Super-Radiant Dynamics, Doorways, and Resonances in Nuclei and Other Open Mesoscopic Systems

    Full text link
    The phenomenon of super-radiance (Dicke effect, coherent spontaneous radiation by a gas of atoms coupled through the common radiation field) is well known in quantum optics. The review discusses similar physics that emerges in open and marginally stable quantum many-body systems. In the presence of open decay channels, the intrinsic states are coupled through the continuum. At sufficiently strong continuum coupling, the spectrum of resonances undergoes the restructuring with segregation of very broad super-radiant states and trapping of remaining long-lived compound states. The appropriate formalism describing this phenomenon is based on the Feshbach projection method and effective non-Hermitian Hamiltonian. A broader generalization is related to the idea of doorway states connecting quantum states of different structure. The method is explained in detail and the examples of applications are given to nuclear, atomic and particle physics. The interrelation of the collective dynamics through continuum and possible intrinsic many-body chaos is studied, including universal mesoscopic conductance fluctuations. The theory serves as a natural framework for general description of a quantum signal transmission through an open mesoscopic system.Comment: 85 pages, 10 figure
    corecore